Сбер разработал алгоритм, определяющий по голосу, кашлю и дыханию вероятность COVID-19
Лаборатория искусственного интеллекта Сбера разработала алгоритм, который в течение 60 секунд может определить вероятность заболевания коронавирусной инфекцией COVID-19. Наличие вируса определяется на основе результатов короткого опроса по симптоматике и трёх звуковых моделей — голоса, дыхания и кашля.
Звуковые файлы превращаются в спектрограмму, показывающую энергию звука на разных частотах, и далее анализируются с помощью глубокой свёрточной нейронной сети. Для её тренировки использовались только открытые данные — это более тысячи образцов звуков дыхания и кашля, собранных с диагностированных пациентов в российских клиниках.
Первый заместитель Председателя Правления Сбербанка Александр Ведяхин:
— В начале ноября прошлого года мы заявили о готовности создать такой алгоритм и с тех пор времени зря не теряли. Конечно, наша модель пока не достигает точности биологического PCR, что неудивительно, но уже сейчас имеет сопоставимые характеристики. При этом она даёт возможность сделать настраиваемую чувствительность, гораздо проще в обращении, удобнее и, что немаловажно, дешевле. Это не медицинский диагностический инструмент, а скорее персональный ежедневный чекер — сдача теста и получение результата занимают всего 60 секунд! В ближайшее время мы планируем создать специальное приложение, которое станет доступно в App Store и Google Play. Это позволит ещё лучше настроить точность модели.
Средний ROC AUC (площадь под «кривой ошибок») созданной Сбером модели на данный момент равен 0,8. Ожидается дальнейшее улучшение качества модели при увеличении объёма данных, в том числе собранных с помощью мобильного приложения.
Звуковые файлы превращаются в спектрограмму, показывающую энергию звука на разных частотах, и далее анализируются с помощью глубокой свёрточной нейронной сети. Для её тренировки использовались только открытые данные — это более тысячи образцов звуков дыхания и кашля, собранных с диагностированных пациентов в российских клиниках.
Первый заместитель Председателя Правления Сбербанка Александр Ведяхин:
— В начале ноября прошлого года мы заявили о готовности создать такой алгоритм и с тех пор времени зря не теряли. Конечно, наша модель пока не достигает точности биологического PCR, что неудивительно, но уже сейчас имеет сопоставимые характеристики. При этом она даёт возможность сделать настраиваемую чувствительность, гораздо проще в обращении, удобнее и, что немаловажно, дешевле. Это не медицинский диагностический инструмент, а скорее персональный ежедневный чекер — сдача теста и получение результата занимают всего 60 секунд! В ближайшее время мы планируем создать специальное приложение, которое станет доступно в App Store и Google Play. Это позволит ещё лучше настроить точность модели.
Средний ROC AUC (площадь под «кривой ошибок») созданной Сбером модели на данный момент равен 0,8. Ожидается дальнейшее улучшение качества модели при увеличении объёма данных, в том числе собранных с помощью мобильного приложения.
Нашли ошибку - выделите текст с ошибкой и нажмите CTRL+ENTER
Другие материалы рубрики

В Пензе на «Саммите плова» приготовили 150 кг национального блюда
Его варили на улице в огромных казанах234 выпускника Пензенского артиллерийского института получили погоны
В филиале военной академии Хрулева прошел выпуск курсантов. Среди них военнослужащие 15 государств
Укрепляйте доверие к вашему заведению вместе со Сбером
Решение Сбера «Отзывы Про» помогает владельцам бизнеса управлять онлайн-репутацией своих заведений, привлекать клиентов и повышать их лояльность
Вадим Супиков: Благодаря таким мероприятиям растет интерес к православным святыням
Спикер Законодательного Собрания обратился к участникам фестиваля «Видеть и слышать»